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We study the influence of a dissipation process on diffusion dynamics triggered by fluctuations with long-
range correlations. We make the assumption that the perturbation process involved is of the same kind as those
recently studied numerically and theoretically, with a good agreement between theory and numerical treatment.
As a result of this assumption the equilibrium distribution departs from the ordinary canonical distribution. The
distribution tails are truncated, the distribution border is signaled by sharp peaks, and, in the weak dissipation
limit, the central distribution body becomes identical to a truncated ldéstribution.

PACS numbegps): 05.20-y, 03.65.Bz, 05.45-a

I. INTRODUCTION This means that for simplicity we study a one-
dimensional case. The one-dimensional variable of interest
The derivation of thermodynamics from dynamics is still undergoes the influence of a “fluctuation,” called The
an open field of investigatiofiL,2]. Here we focus on a re- dynamics of¢ is driven by an operatol which concisely
lated but seemingly less ambitious purpose, the derivation aéxpresses the action that a set of variallesan exert org,
fluctuation-dissipation processes from deterministic dynamso as to render its time evolution disordered. Thus, in prin-
ics [3,4]. It was recently pointed oui4] that a genuinely ciple, the “stochastic” dynamics of can be either provoked
dynamic derivation of Brownian motion would be essentially by nonlinearity or by a large number of degrees of freedom.
equivalent to a mechanical foundation of thermodynamics]he unperturbed fluctuatiorsare the source of diffusion of
thereby implying that this avenue might also be fraught withthe variablex. To also undergo dissipation, the second key
strong conceptual difficulties. It was remarkpd that the ingredient of a fluctuation-dissipation process, the .va_rlable
dynamic foundation of Brownian motion, as described by arimust also exert a feedback on the dynamicg .offhis im-
ordinary Fokker-Planck equation, implies fluctuations with aportant property is expressed by the dependendeai A2,
finite correlation timer; that is, it rests on the existence of a left unspecified. In this paper we shall assume a linear de-
finite microscopic timeor, equivalently, on the microscopic parture from the unperturbed conditioliy given by
foundation of the linear response thedB]. However, the f(_A2X):f0_A2Xf1. The operatof“l drives the bath re-
resulting transport equation can be identified withoma fide  sponse to an external perturbatipt]. The parameter A2
Fokker-Planck equation only [6] the corresponding relax- denotes the strength of the feedback, and the minus sign
ation process is exactly, not approximately, exponential: alludes to the reaction nature of the effect. Pursuing our pro-
property in harsh conflict with both quantum] and classi- gram inspired by Occam'’s criterion, we are forced to assume
cal[8] dynamics. This is the main reason why the problem ofthe variable¢ to be dichotomous. It would be surprisingéif
the dynamic foundation of the ordinary Fokker-Planck equaand thus the microscopic statistics, would be Gaussian. In a
tion is not yet settled, and further efforts must be made, nosense, there would be no problem to solve at all. Therefore,
excluding the possibility of either non-Newtonian effe2$  we must adopt a non-Gaussian statistics. Thus we fix the
or spontaneous fluctuatiof8], both implying a kind of gen-  statistics of¢ to be dichotomous, since dichotomous statistics
eralization of ordinary classical and quantum mechanicsseems to be the simplest example of non-Gaussian statistics.
Here we reverse the perspective; rather than imposing the We plan to prove that a bath, described by an unperturbed
Markovian approximation, incompatible with the determinis- operatorf”, with a diverging correlation time;=co, yields a
tic nature of the system under study, we discuss the consggrm of equilibrium strongly departing from the ordinary ca-
quence of explicitly rejecting the requirement of a finite mi- nonjcal prescription. The proof is organized as follows. In
croscopic time scale. To conduct this discussion, we adopsec. || we derive a generalized master equation. We make
Occam’s principle, that is, we study the simplest dynamicakhe hasic assumption that the memory kernel of this master
system with the essential features necessary to produceguation depends only on the unperturbed bath dynamics.
fluctuation-dissipation process without using the requiremengsing the additional assumption that the bath response is of
of a finite microscopic time scale. _ the same kind as that studied in earlier publications, we de-
Let us consider the Liouville-like equation rive the central theoretical result of this paper. In Sec. Ill we
discuss the error associated with the basic assumption of Sec.
Il. In Sec. IV we use the central theoretical result of this
paper to predict the resulting, noncanonical, equilibrium. In
P Sec. V we numerically check the effect of the error discussed
| el P2 in Sec. Il. Finally, in Sec. VI we make a balance of the
N é&x+r( A |pr(x.gwt). (D results obtained in this paper.

a ~
ST Ew ) =Lpr(x,Ew.t)
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II. PROJECTION METHOD (92 t A . .
Alpr(x €] = | avipretedtot-11-01e

In the case when no feedback is consideraa=Q) (see
Ref.[10]), an immediate benefit of the dichotomous choice is
that, by using the projection operator methdd ], we can X I5pT(x,§,w,t')} (8)
express the dynamics of the variable of intera@sin terms
of an exact and simple diffusionlike equation of motion. and
When the feedback is included, unfortunately, the projection
method does not produce a simple equation of motion, an% 50 toa - fo An
delicate assumptions must be made if we want to keep th [pT(X'g’W't)]ZAZ&XLdt {P[€lexd o(t—t")]-Q[T'4]
elegance and simplicity of the earlier treatment. The main
purpose of this section is to discuss these delicate assump- X I5pT(x,§,w,t’)}. 9)
tions.

The adoption of the projection methptil] yields, for the In conclusion, to derive this result we have used a major
part of interestPpy of the total distribution, the following ~assumption that will be referred to as assumption This
equation: assumption can be expressed as follows.

Assumption (i) We assume that the exponential operator
PR A appearing on the right hand side of Eg) depends only on
exfd QLQ(t—t")]-Q the unperturbed bath dynamics. In the case where no feed-
back process is considergti0], there is no error associated
with this assumption, since this is shown to be an exact con-
sequence of the dichotomous nature of the varigblé is
not so in the more general case of this paper. We shall devote
. Sec. Il and the numerical treatment of Sec. V to assessing
X PPT(Xif’th’)}dt'- @ the consequences of the error associated with this basic as-
sumption. Adopting the formalism of the response theory

As usual, we assume the bath to have an equilibrium dist4], we rewrite Eq(7) in the form

tribution pe4(§,w) satisfying the condition

d . _ th . J
ﬁPpT(Xinglt)_Jo P _gé’_x

X

d 2
—é-+T (=A%)

d t 9?

A _ — (&2 ’ Y AV 2

[ opeq £:W) =0. 3) g o(x,t)=(& )eqfodt D (t—t )ax2 o(x,t")
This dictates the choice of the projection opera®or 5 J’t N ,

FAXET)eq | dUC(t—t) - xo(x1),

Ppr(X, £ W;t) = 0(X,1) peg( £,W), 4

(10)
where o(x,t) is obtained by tracing the total distribution where
p1(x,€,w,t) over the irrelevant degrees of freed@nandw.
Note that Eq(2) is an exact equation provided that the initial (EE(D)
condition is given by Dy ()= Weq (12)
eq
p1(X,&,W;0) =0 (X;0) pey( §,W). 5
and
For simplicity we assume that L
<§eXF(FOt)F1>eq
3 3 3 Cty=——F——"—. 12
[(K)=Ty+KTI;. (6) () (€' 1)eq 42

We carry out our calculations setting the conditi?h  This result has been obtained by evaluating the diffusion
=—A%. This is equivalent to assuming a form of linear term at the zeroth order in the feedback interaction, and by
response to external perturbation in agreement with Refgonsidering, in agreement with the linear response criterion
[12-15. We make now the assumption that, in spitefof [4], the first nonvanishing contribution, proportional to the
#0, the exponential operator €XpLQ(t—t')] appearing in friction. It is worth remarking that the correlation function of
Eq. (2) depends only on the unperturbed operdtgra prop-  EQ. (11) affords the most convenient way of defining the
erty that, as pointed out earlier, is valid only in the freeMicroscopic timer mentioned in Sec. I. This is given by
diffusion case[10]. We also use Eq(3). Under all these

approximations, we are allowed to rewrite Eg) as = waDg(t)dt. (13)

d .
ZPPr(% & w ) =Alpr(X,&,w,) ]+ B[ pr(x,&,w,1)], We now have recourse to the second approximation on
(7)  which our crucial theoretical results rests. This assumption
will be referred to as assumptidin), and can be expressed as
where follows.
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Assumption (ii) We assume that the functid®(t) has a  supplemented, of course, by the set of equations necessary to
finite time scale. This assumption is dictated by the theoretdetermine the time evolution of the dichotomous variable
ical and numerical conclusion of the earlier work of Refs.&(t). In this section we show that E¢L6) is not identical to
[12—-15. This assumption cannot be mislead as a property ofhe equation of motion fowr(x,t) generated by Eq(17).
ordinary statistical mechanics. Actually, this assumptionThis will help us to estimate the error affecting the main
means a deviation from ordinary statistical mechanicsprediction of this paper about the condition of equilibrium
which, as shown in Ref4], would imply established by the feedback on the generator of fluctuation

without time scale.

C(t)=D(1). (14)
In the case where the correlation functidn(t) is not inte- A. Second moment time evolution
grable and the correlation time of EQ.3) diverges, the con- In Sec. IV we shall point out that Eq17) implies that
dition of Eq. (14) would imply a field of finite intensity to throughout the system’s time evolution the trajectary)
produce a current of infinite intensifyl2]. The numerical departing from the initial conditior(0)=0 never leaves the
calculations show that this striking physical condition is notinterval[ —W/y,W/y]. This property means that the second
realized[12], thereby implying a violation of Eq14). This ~ moment of the distribution is kept finite at all times and can
violation, in turn, is due to the fact that the functi®t) has  never exceed the maximum valu&/(y)?. Here we show
a finite time scale even when the functidn(t) does not. that, on the contrary, the second moment of the distribution
Note that under the assumption that the funci@(t) has a  driven by Eq.(16) diverges fort—c.

finite time scale, it is possible to define Using Eq.(16), we obtain
% Jd 9 ® J
yEAz(ffl)qu dt’C(t). 15 (X (t)>=yf dxx® — [xo(x,1)]
0 —
In conclusion, we obtain the following important equa- * t 7
tion: ’ g 1mp q +<§2>J dxxzf At @ (t—t') — o(x,t").
- —c 0 aX
p , Jt P (18
—o(Xx,t)= dt’' d(t—t")—o(x,t’
ot T D=(eq 0 el )axz oixt) Using the method of integration by parts, it is shown that Eq.
P (18) yields
+ ‘y(?—XX(T(X,t). (16

d t
E<X2(t)>= —27<X2(t)>+2<§2>f o(t)dt’. (19
This result rests on both assumptidnsand(ii). However, it °

is evident that special attention must be devoted to the firs{,ie that the first term on the right hand side of Exf) can

:frzggfii)%gnIgs:ezzgzeb;/htiev?giggyegga?z?\%mn%mgzrri]:asl wobf derived from the first term on the right hand side of Eq.
8) via integration by parts, provided that the decay of the
of Refs.[12—14. The validity of assumptiofi), on the con- e g yp P y

, ) ; P , function o(x,t) for |x]—o is faster than 1|3. This means
trary, requires further discussion. This will be done in Secsthat the distributionr(x,t) cannot be a [y process at any
[l and V. '

Bef ding thi . £t K that in th finite time t>0. We know that, aty=0, the diffusing dis-
elore ending this section, we want to remark that In &, tjon s in fact a Ley process with ballistic peaks signal-
special case where the condition of Efi4) applies, the im-

portant result of Eq.(10) becomes very similar to the ing the presence of a propagation fr¢a0), thereby ensur-

. ing the validity of the method of integration by parts. It is
Fokker-Planck-type equation recently found by the author - ; it
of Ref. [16]. These authors pointed out that an equation o lausible to assume that the action of a dissipation process

this Kind sh that | diffusi b tibl makes the spreading of the distribution still less intense, thus
IS KInd shows that anomalous diftusion can be compati ‘?avoring rather than opposing the method of integration by
with Boltzmann statistics. We note that this conclusion doe

not apply to the case of super-diffusion under study in thi arts.
) Th luti f Eq(19) is gi
paper, because, as we have seen,(E4).does not apply. In e solution of Eq(19) is given by
the subdiffusional case studied in REf6], however, there (&%) [t
are no compelling reasons leading to the breakdown of Eq.  (x?(t))= —j D (t—t")[1—exp(—2yt")]dt". (20)
(14), thereby leaving open the possibility that this condition Y Jo

is compatible with Boltzmann statistics. ) i ]
For the correlation functio (t) let us adopt the choice

I1I. NO INTERFERENCE BETWEEN FREE FLUCTUATION (,BT)B
AND DISSIPATION: TIME EVOLUTION Dyt)= ———, (21)
o . . . (BT+1)
At first sight, one might be led to think that E(L6) is
equivalent to the Langevin-like equation whereT is the mean waiting time in a state of the velocity. In

) fact, as a consequence of the one-dimensional assumption,
X(t)=—yx(t)+ &(t), (17 we are allowed to use the relatighO]
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g2 (BT)FTL(B+1) _ We_ see that thg _asymptqtic value fpr the second moment
P(O=T—=D(t)= s (22)  is, as it must be, finite, and in the special case of (&) the
dt (BT+1) analytical expression for the second moment=ate is
where(t) is the distribution density of sojourn times. Plug- r'(1-p8,yBT)
ging the analytical form of Eq(21) into the right-hand side (X2(2))=(£2)(BT)P exp( VB4 (29
of Eqg. (20), and making a time asymptotic analysis, we ob- Y
tain wherel'(«a,z) is the incompletey function.
i 2\ 1- B In conclusion, we see that assumptih produces the
tm<x ()=t"=% >0 (23 seemingly unacceptable effect of making the asymptotic sec-
ond moment diverge, whereas the exact equation of motion
yields a second moment which is always finite, that at equi-
and librium attains the finite value predicted by E®9). The
T YN discussion of Secs. IV and V will explain in which sense the
I'm0<x O)=t="F  t>1. (24) error associated with assumpti@n does not invalidate our
L main conclusion that the final equilibrium distribution is of
the Levy kind.
B. Exact equation of motion for o(x,t)
We note that the use of the same projection method as C. Gaussian case
that applied in Sec. Il to the dynamic system described by The purpose of this subsection is to study the diffusion
Eq. (17) yields process generated by Ed.7) under the assumption that the
J J J [t fluctuating variable(t) is a Gaussian process. In this case, it
—o(X,t)= y—xao(X,t) +(£2) _j dt’ is convenient to proceed as follows. We write the counterpart
at 2 IXJo of Eq. (1) as
! ﬁ ’ & ! a ~ ~
X (I)‘-f(t_t )'eX ’y&x(t_t ) (Q_XO-(X’t ) ' EPT(ngawlt):[LO_FLl]pT(X!glwvt)! (30)

2
(25 whereLl, is the interaction term, anfl, is the unperturbed
We immediately see that the same approximation as thderm given by
applied to Eq.(2), namely, the approximation of neglecting N,
the influence of the feedback on the memory kernel, makes Lo=Latls. (3D
Eq. (25) identical to Eq.(16). Consequently, the numerical o ] )
treatment of Eq(17) is expected to depart from the predic- In the_ case under study, the explicit form of the interaction
tion of Eq.(16), and the amount of this departure can be used® IS
as a way to establish the error caused by assumftiamthe
derivation of Eq.(16), which is the central result of this |A-1=—§i- (32)
paper. X
Equation(25) can be used to derive an analytical expres-
sion for the second moment time evolution. The Taylor seOf course,
ries expansion of the exponential operator on the right-hand

side of Eq.(25), and the use of integration by parts, yield La= y(;ixx_ (33
J t ~
E<X2(t)>+27<X2(t)>:2<§2>f D 4(t")exp(—yt’)dt’, We leave the form of the operatbf unspecified, concern-
0

ing the variableg andw. We set only the constraint that the
variable ¢ turns out to be Gaussian.

Also in this specific case an exact expression for the re-
duced distributiono(x,t) is found. The procedure is as fol-
. y !ows. We Wri_te the tirr?e evolution qth(x,g,vlv,é) W_i:)hir) the

204\\ — 9/ ¢£2 _ , interaction picture; then we trace the total distribution over
() =2(E5exn 2yt)f0exq2yt )fo Pe(7) the irrelevant variables, thereby producing

(26)

which, in turn, yields the following time evolution:

Xexp(—yr)drdt’. (27 N t
o(x,t)=exp(Lat) expf dt’'Lq.(t")) (34
It is worth remarking that the general expression for the ° B

asymptotic value of the second moment is where(- - -)g denotes the average on the bath of the vari-

N o ables¢ andw, supposed to be at equilibrium. As shown in
<X2(w)>:@f Dt )exp( — yt')dt’. (29) Ref.[17], in the Gaqssia_n case the exponential fcerm can be
Y Jo related to a double time integral over the correlation function
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(E()€(t"))g, which, due to the assumption of equilibrium IV. EQUILIBRIUM PROPERTIES
on the bath, turns out to depend only ¢in-t’|. After

straigthforward calculations, we finally obtain The fact that the second moment does not converge to a

finite value is a consequence of the central approximation
yielding Eq.(16). This does not conflict with the possibility
that for t—oo the distribution asymptotically approaches a
time independent shape. Using the recent results of Refs.
[10] and[20], it is shown that the Fourier transform of Eq.
(16) obey the time evolution equation

i t i t

X

(9 t I ! a !
+ 5,[0(:“ <§§(t ))Bex ’)’5Xt

d " d .
Lok t)=—b|k|*o(Kk,t) — vk—o(k,t), (37
F(x,t). (35) n” K% Koty

J
X ex;{ - ygxt’
wherea=1+ 3, andb is a positive constarisee Eq(21) of

A reader interested in more details on how to derive thiSRef. [20]]. This equation yields the equilibrium distribution

exact result can consult, for instance, Rdf8]. This author b
shows that an earlier general requl®], of which Eq.(35) is [r(k,oo)zexp{ - —|k|“), (39
a special case, is exact in the case of a Gaussian bath. @y
It is easy shown that this equation, in turn, is equivalent tc\Nhich, in turn, according to Ref21], coincides with the
equilibrium distribution corresponding to the equation of

d ) 92 t o R motion,
EO’(X,t):<§ >eq§0(x,t)‘[0dt q)g(t )e g
; GX(O=— (O + (1), (39
+ 7&—XU(X,I)- (36)
X where 7(t) is an uncorrelated noise, with probability distri-
bution p(7), obeying Lavy statistics, and is thus defined in
Note that one would be tempted to identify Fourier space by
' _ ’ 2 .
PV =A)(E)eq p<k>=f dr exp(— ik n)p( ) =exp ~blk*),  (40)

with the correlation function(£(0)£(t'))=(£%eq®(t'),  where 0< u<2.

playing the role of memory kernel in EGL6). In this case It must be pointed out that E¢9) does not coincide with
one might feel that Eq(16) becomes equivalent to EB6). g4 (17). In the case of very weak friction, they do coincide
In other words, one might be tempted to conclude that with;, a sense that will be illustrated in Sec. V.

out assumption(i) the equivalence between Eqd6) and
(17), which in the case where the noise is Gaussian is proved
here to be equivalent to E36), is insured. This is not so,
because Eq(36) is an equation without a time convolution ~ The numerical results of this section are based on a nu-
between memory kernel and probability density, whereas thenerical treatment of Eq17), and consequently on a numeri-
first term on the right-hand side of E(L6) has such a time cal implementation of

convolution. This is so because we are now using the as-
sumption that¢ of Eq. (17) is Gaussian. The Gaussian as-

sumption has the effect of producing a reduced equation of X(t):f

V. NUMERICAL RESULTS

otexp[— y(t—t")JEt)dt’ +x(0)exp — yt).

motion without the time convolution that, according to the (41)
theoretical analysis of Ref20], is responsible for the emer-
gence of Ley statistics. The fact that the variablé is dichotomous with the correla-

On the other hand, we might have reached the same cotion function of Eq.(21) naturally leads us to adopt the same
clusion without any complex analytical treatment by observ-numerical approach as that used in Rgf§,22. This means
ing that Eq.(17) is a linear equation, and that the Gaussianthat two random number generators are used. The first results
statistics of¢(t), if this process is assumed to be Gaussian, isn a random number homogeneously distributed in the inter-
transmitted from the microscopic level of the varialfleo  val [0,1]. With a proper nonlinear deformation this is made
the macroscopic equilibrium distribution of This shows equivalent to a random generation of waiting times with the
that replacing the dichotomus variabfewith a Gaussian distribution of Eq.(22). This is the way we adopt to build up
variable would have effects much more devastating than aghe time evolution ok(t) numerically. We also set an initial
sumption(i). Equation(16) yields a Lery form of equilib-  condition fitting the crucial condition of Eq5), and make
rium as shown in Sec. IV, and this agrees with the numericalhe trajectory run for times larger than 30/We run 106
treatment of Eq(17), which in fact yields a form of trun- trajectories, then we record all of them in a bin. In Fig. 1 we
cated Ley distribution that become indistinguishable from see a sample of the resulting equilibrium distribution with
the prediction of Eq(16) in the limiting case of a very weak B=0.6, T=50, W=1, and y=10"4, spanning fromx
friction. =—W/v to x=W/y. Figure 1 is a crystal clear illustration
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quence of the fact that with a finite number of trajectories the
P(z) peaks, which are expected to give significant contributions to
the second moment, cannot be satisfactorily reproduced.

In conclusion, these numerical results prove that we are in
a full control of the error caused by approximatiGh The
markedly Lery character of the equilibrium distribution, in
the sense illustrated here with the help of Fig. 1, proves that
the main prediction of this paper is correct. We recall that
this prediction can be formulated as follows: The diffusion
feedback on the dynamics of a generator responsible for su-
perdiffusion results in noncanonical equilibrium, this being
of the same kind as that found years ago by West and Se-
shadry[21] using only probabilistic and phenomenological
arguments.

0.001 |

00001 |

L L L L
-5000 0 5000 10000

x

L
-10000

FIG. 1. Equilibrium distributiorP(x) = o-(x,) as a function of VI. CONCLUDING REMARKS
x. The Levy distribution obtained with the anti-Fourier transform of
Eq. (38) (dashed ling fits the distribution middle very well. The This section is divided into two parts. The former is de-
system parameters used are 10~4, T=50, and3=0.6. The nu- Voted to summarizing the arguments used to derive &/ Le
merical conditions are as follows: the number of trajectories fs 10 equilibrium distribution, and to pointing out the main results.
the observation time is 210°, the bin interval is 80, and  The latter aims at outlining the new perspective on statistical
=8.4x 10", mechanics emerging from these results.

of what we mean by statistics of g kind. We see that the A. Main result
equilibrium distribution is truncated, and that at the borders s paper is devoted to extending the program of Refs.

two sharp peaks emerge. These sharp peaks are a manifestg-5) to the case where the bath does not have a finite time
tion at equilibrium of the same dynamic properties responscale. We show that this yields an equilibrium distribution of
sible for the peaks revealed by the numerical treatment ofhe | gy kind rather than the ordinary canonical equilibrium
free diffusion[10,23. However, the distribution enclosed by gistribution. This result rests on the assumptions that the ex-
thes_e peaks is shown to fit very well thewyedistribution ponential operator appearing on the right-hand side of Eq.
predicted by the theory of Sec. IV.. (2) depends only on the unperturbed dynamjessumption

Figure 2 is devoted to a comparison between the theoreh)], and that the response functi@(t) of Eq. (12) has a
ical prediction of Eq.(29) and the result of our nume_rical finite time scale/assumption(ii)]. We take assumptiofii)
treatment. The agreement between theory and numerical &y granted on the basis of the results of the research work of
culation is extremely good, not only in the Gaussian regimezefs, [12—-15. Ordinary statistical mechanid<2] would
B>1, but also in the regimg<1 up to=0.5. Significant  yie|q Eq.(14), and this equation, in turns, would lead to the
d|screp_anC|es be_tween theory and numerical results can @%neralized Einstein relatiofsee, for instance, Ref15]).
found in the region close t@=0, probably as a conse- According to the Einstein relation the first moment of a dif-

fusion process perturbed by a constant field is proportional to
< 22(c0) > the unperturbed second moment. In the case of ordinary sta-
— tistical mechanics the second moment of an unperturbed dif-
fusion process is linear in time, and so is consequently the
R 1 time evolution of the first moment of the perturbed diffusion
e | process. The generalization of the Einstein relation to the the
: ey case of anomalous diffusion is possible in the case of sub-
w07 LT e ] diffusion [15]. In this case the generalized Einstein relation
T, produces a current whose intensity tends to vanish with
105 | R — 1 —o0, The application of Eq(14), and consequently of the
Einstein equation, to the case of superdiffusion would lead to
a current with an intensity increasing in time with no upper
limit: a physical condition that we judge to be unacceptable.
e . L . . o We think that this lends support to the conclusion of the
numerical analysis of Ref12], implying a breakdown of the
Kubo relation and a functio@(t) with a finite time scale, in
the case of superdiffusion.

FIG. 2. Comparison between computed and theoretical distribu- AS far as assumptiofi) is concerned, we prove that it is
tion variances. The theoretical prediction used is Bf). The Valid using the following arguments. First of all, we show
crosses indicate the numerical result and the lines the theoreticiiat by means of this assumption as well as of assumption
prediction. Each curve has been obtained keepimgnstant. From (i), we obtain the central result of E€L6); from this, using
the bottom to the top curve the values pfare 102, 5x 103, the arguments of Sec. 1V, the desiredvizeequilibrium dis-
104, and 10°. tribution. Then we focus our attention on Ed7) in the case

105 |
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when the variable¢ is dichotomous. This Langevin-like shows, on the contrary, that the opposite condition might
equation corresponds to the original dynamical model undeapply, that is, that ordinary rather that anomalous statistics
the condition that only assumptidii) is taken for granted. might be the result of numerical inaccuracy. We know that
Consequently, the comparison between the time evolution ahe roundoff errors are equivalent to the influence of fluctua-
o(x,t) generated by this equation and that produced by Ecgtions of a given intensitye. The larger the computer accu-
(16) is expected to be equivalent to assessing the error stemacy, the smaller the intensity of the equivalent fluctuations.
ming from assumptior(i). We prove that Eq(17) yields, On the other hand, we knoy26] that the effect of these
with no approximation, Eq(25). Unfortunately, we do not fluctuations is that of changing the correlation function of
have available any general solution of this resulting equationizg. (11) into a correlation functioncD’g(t) related to the
except for an analytical expression of the second momenrdriginal by
[see Eq(27)]. For this reason we now rest on the result of a
numerical approach. The numerical approach proves that, as D (1) =D (t)exp —t/te), (42
expected, the resulting equilibrium distributisee Fig. 1is
of Levy type. The accuracy of the numerical approach is
checked, in turn, by comparing the numerical and theoreticalvith tc proportional toe®, ands a positive coefficient, of the
second momentésee Fig. 2 We judge the agreement be- order of unity, determined by the microscopic dynamics un-
tween theory and numerical treatments to be satisfactoryder study[26]. It is evident that at times>t. the Markov
thereby confirming our conviction that the numerical result isapproximation is valid, and as an effect of this the nonstand-
accurate. This numerical approach leads, at the same time, &d equation of E¢(10) becomes identical to a conventional
the results illustrated in Fig. 1, which distinctly shows the Fokker-Planck equation. The nonconventional equilibrium of
Levy nature of equilibrium reached by the system of interestEg. (25) is a time asymptotic property, and at any given time
when its bath does not have a finite time scale. t>1/y we can produce a transition from the regime of non-
Note that the dichotomous nature of the variaplef Eq.  ordinary statistics to a regime of canonical Gaussian equilib-
(17) is essential to establish an agreement with the predicum by increasing the intensity of the parameterso as to
tions of Eq.(16), and consequently with the main conclusion realize the condition 3> 7.
of this paper. In fact, the Gaussian assumptioréfeeems to Finally, we want to stress a problem worthy of future
be incompatible with the inverse power nature of its correlainyestigation. This has to do with the increasing attention
tion function. This is so because the Gaussian assumption fQfayoted to the nonextensive thermodynamics of Tsglfs-

¢ would enforce an important property of the ordinary linear,g) Nonextensive thermodynamics means that the deviation
response theory, the one expressed by (E4). At the level ¢, the canonical equilibrium distribution is no longer per-

of the response of the bath to a steady external perturbatlogeived as a violation of statistical mechanics. This is a very

this would produce the unphysmal effect _of a divergent CUry, ajuable aspect of this research wogZ—29. In fact, as a
rent. Furthermore, the Gaussian assumption, due to the linear . - . L

. S . “fesult of the interest that Tsallis's nonextensive statistical
nature of Eq(17), would produce a Gaussian equilibrium, in mechanics has raised, a deviation from the ordinary prescrip-
deep conflict with the prediction of E¢16). ’ yPp P

On the basis of these arguments we conclude that assum gn, of the kmq earlier _mentqned, would be J_udged these
tion (i), as well as assumptioii), is correct, and with it Eq. ays as a possible manifestation of no_nextenswe thermpdy-
(16) is also correct. Thus we prove that a thermal bath with@mics triggered by long-range correlations of the dynamical
no time scale yields a vy rather than a canonical equilib- System under study, rather than a consequence of numerical
rium. inaccuracy.

However, the arguments of this paper show that under the
B. On a new perspective in statistical mechanics specific form adopted here to establish a fluctuation-
] ) . _dissipation process in a case of dynamics without time scale,
What, then, is the point of our results? We think that the'rtlhe basin of attraction for equilibrium distribution is given by

4 évy statistics. It is interesting to point out thaf\estatis-
perspective concerning the microscopic foundation of the ¢ vy glop e

nonical statistical behavior. Some vears ago. the findings O"cs and Tsallis statistics share a power law behavior of the
. - SOme y 90, 9s Qiistribution tails. However, the central part of théviyedis-

Zhu and Robinson24] were criticized by Keirstad and Wil- tribution sianificantly departs from the generalized canonical

son[25], with arguments which are a nice example of the ‘outl 'gniti y dep 9 'z !

conventional wisdom. Let us see why. Zhu and Robinsorgistribution of Tsallis. In an earlier papg30], it was shown

[24] detected significant deviations from the canonical Max-Nat the adoption of Tsallis” nonextensive thermodynamics

well velocity distribution, in a physical condition character- Naturally leads, via entropy maximization under a proper
ized by a system of interest that is very fast compared to itgonstraint, to a transition probability with an inverse power
thermal bath. This condition seems to be related to that corfaW decay at large distances. By repeated application of this
sidered in this paper, where the dynamical system playindind of transition, as a consequence of thesy-6nedenko
the role of a bath is in fact so slow as to break the conditiortheorem[31], the diffusion process is attracted by the basin
of time scale separation. The reaction of the scientific comof Levy statistics. In the case of extremely weak friction,
munity, of which the authors of Ref25] are a significant equilibrium is reached as a result of a very large number of
example, has been that the noncanonical behavior detectetementary transitions, and this is probably the main reason
numerically by Zhu and Robinsdi24] is an artifact of nu- why at the end the resulting statistics is ofviyerather than
merical inaccuracy and limited computation time. This papefTsallis kind.
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