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Fluctuation-dissipation process without a time scale
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We study the influence of a dissipation process on diffusion dynamics triggered by fluctuations with long-
range correlations. We make the assumption that the perturbation process involved is of the same kind as those
recently studied numerically and theoretically, with a good agreement between theory and numerical treatment.
As a result of this assumption the equilibrium distribution departs from the ordinary canonical distribution. The
distribution tails are truncated, the distribution border is signaled by sharp peaks, and, in the weak dissipation
limit, the central distribution body becomes identical to a truncated Le´vy distribution.

PACS number~s!: 05.20.2y, 03.65.Bz, 05.45.2a
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I. INTRODUCTION

The derivation of thermodynamics from dynamics is s
an open field of investigation@1,2#. Here we focus on a re
lated but seemingly less ambitious purpose, the derivatio
fluctuation-dissipation processes from deterministic dyna
ics @3,4#. It was recently pointed out@4# that a genuinely
dynamic derivation of Brownian motion would be essentia
equivalent to a mechanical foundation of thermodynam
thereby implying that this avenue might also be fraught w
strong conceptual difficulties. It was remarked@4# that the
dynamic foundation of Brownian motion, as described by
ordinary Fokker-Planck equation, implies fluctuations with
finite correlation timet; that is, it rests on the existence of
finite microscopic time, or, equivalently, on the microscopi
foundation of the linear response theory@5#. However, the
resulting transport equation can be identified with abona fide
Fokker-Planck equation only if@6# the corresponding relax
ation process is exactly, not approximately, exponentia
property in harsh conflict with both quantum@7# and classi-
cal @8# dynamics. This is the main reason why the problem
the dynamic foundation of the ordinary Fokker-Planck eq
tion is not yet settled, and further efforts must be made,
excluding the possibility of either non-Newtonian effects@2#
or spontaneous fluctuations@9#, both implying a kind of gen-
eralization of ordinary classical and quantum mechan
Here we reverse the perspective; rather than imposing
Markovian approximation, incompatible with the determin
tic nature of the system under study, we discuss the co
quence of explicitly rejecting the requirement of a finite m
croscopic time scale. To conduct this discussion, we ad
Occam’s principle, that is, we study the simplest dynami
system with the essential features necessary to produ
fluctuation-dissipation process without using the requirem
of a finite microscopic time scale.

Let us consider the Liouville-like equation

]

]t
rT~x,j,w,t !5L̂rT~x,j,w,t !

[F2j
]

]x
1Ĝ~2D2x!GrT~x,j,w,t !. ~1!
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This means that for simplicity we study a on
dimensional case. The one-dimensional variable of interex
undergoes the influence of a ‘‘fluctuation,’’ calledj. The
dynamics ofj is driven by an operatorĜ which concisely
expresses the action that a set of variablesw can exert onj,
so as to render its time evolution disordered. Thus, in p
ciple, the ‘‘stochastic’’ dynamics ofx can be either provoked
by nonlinearity or by a large number of degrees of freedo
The unperturbed fluctuationsj are the source of diffusion o
the variablex. To also undergo dissipation, the second k
ingredient of a fluctuation-dissipation process, the variabx
must also exert a feedback on the dynamics ofj. This im-
portant property is expressed by the dependence ofĜ on D2,
left unspecified. In this paper we shall assume a linear
parture from the unperturbed conditionĜ0 given by
Ĝ(2D2x)5Ĝ02D2xĜ1. The operatorĜ1 drives the bath re-
sponse to an external perturbation@4#. The parameter2D2

denotes the strength of the feedback, and the minus
alludes to the reaction nature of the effect. Pursuing our p
gram inspired by Occam’s criterion, we are forced to assu
the variablej to be dichotomous. It would be surprising ifj,
and thus the microscopic statistics, would be Gaussian.
sense, there would be no problem to solve at all. Theref
we must adopt a non-Gaussian statistics. Thus we fix
statistics ofj to be dichotomous, since dichotomous statist
seems to be the simplest example of non-Gaussian statis

We plan to prove that a bath, described by an unpertur
operatorĜ0 with a diverging correlation time,t5`, yields a
form of equilibrium strongly departing from the ordinary c
nonical prescription. The proof is organized as follows.
Sec. II we derive a generalized master equation. We m
the basic assumption that the memory kernel of this ma
equation depends only on the unperturbed bath dynam
Using the additional assumption that the bath response i
the same kind as that studied in earlier publications, we
rive the central theoretical result of this paper. In Sec. III
discuss the error associated with the basic assumption of
II. In Sec. IV we use the central theoretical result of th
paper to predict the resulting, noncanonical, equilibrium.
Sec. V we numerically check the effect of the error discus
in Sec. II. Finally, in Sec. VI we make a balance of th
results obtained in this paper.
4801 ©2000 The American Physical Society
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II. PROJECTION METHOD

In the case when no feedback is considered (D50) ~see
Ref. @10#!, an immediate benefit of the dichotomous choice
that, by using the projection operator method@11#, we can
express the dynamics of the variable of interest,x, in terms
of an exact and simple diffusionlike equation of motio
When the feedback is included, unfortunately, the project
method does not produce a simple equation of motion,
delicate assumptions must be made if we want to keep
elegance and simplicity of the earlier treatment. The m
purpose of this section is to discuss these delicate assu
tions.

The adoption of the projection method@11# yields, for the
part of interestP̂rT of the total distribution, the following
equation:

]

]t
P̂rT~x,j,w,t !5E

0

t H P̂F2j
]

]xGexp@Q̂L̂Q̂~ t2t8!#•Q̂

3F2j
]

]x
1G~2D2x!G

3 P̂rT~x,j,w,t8!J dt8. ~2!

As usual, we assume the bath to have an equilibrium
tribution req(j,w) satisfying the condition

Ĝ0req~j,w!50. ~3!

This dictates the choice of the projection operatorP̂,

P̂rT~x,j,w;t !5s~x,t !req~j,w!, ~4!

where s(x,t) is obtained by tracing the total distributio
rT(x,j,w,t) over the irrelevant degrees of freedomj andw.
Note that Eq.~2! is an exact equation provided that the initi
condition is given by

rT~x,j,w;0!5s~x;0!req~j,w!. ~5!

For simplicity we assume that

Ĝ~K !5Ĝ01KĜ1 . ~6!

We carry out our calculations setting the conditionK
52D2x. This is equivalent to assuming a form of line
response to external perturbation in agreement with R
@12–15#. We make now the assumption that, in spite ofD

Þ0, the exponential operator exp@Q̂L̂Q̂(t2t8)# appearing in
Eq. ~2! depends only on the unperturbed operatorĜ0, a prop-
erty that, as pointed out earlier, is valid only in the fr
diffusion case@10#. We also use Eq.~3!. Under all these
approximations, we are allowed to rewrite Eq.~2! as

]

]t
P̂rT~x,j,w,t !5A@rT~x,j,w,t !#1B@rT~x,j,w,t !#,

~7!

where
s

.
n
d
e

n
p-

s-

s.

A@rT~x,j,w,t !#[
]2

]x2E0

t

dt8$P̂@j#exp@Ĝ0~ t2t8!#•Q̂@j#

3 P̂rT~x,j,w,t8!% ~8!

and

B@rT~x,j,w,t !#[D2
]

]x
xE

0

t

dt8$P̂@j#exp@Ĝ0~ t2t8!#•Q̂@Ĝ1#

3 P̂rT~x,j,w,t8!%. ~9!

In conclusion, to derive this result we have used a ma
assumption that will be referred to as assumption~i!. This
assumption can be expressed as follows.

Assumption (i). We assume that the exponential opera
appearing on the right hand side of Eq.~2! depends only on
the unperturbed bath dynamics. In the case where no fe
back process is considered@10#, there is no error associate
with this assumption, since this is shown to be an exact c
sequence of the dichotomous nature of the variablej. It is
not so in the more general case of this paper. We shall de
Sec. III and the numerical treatment of Sec. V to assess
the consequences of the error associated with this basic
sumption. Adopting the formalism of the response theo
@4#, we rewrite Eq.~7! in the form

]

]t
s~x,t !5^j2&eqE

0

t

dt8Fj~ t2t8!
]2

]x2
s~x,t8!

1D2^jG1&eqE
0

t

dt8C~ t2t8!
]

]x
xs~x,t8!,

~10!

where

Fj~ t ![
^jj~ t !&eq

^j2&eq

~11!

and

C~ t ![
^jexp~ Ĝ0t !Ĝ1&eq

^jĜ1&eq

. ~12!

This result has been obtained by evaluating the diffus
term at the zeroth order in the feedback interaction, and
considering, in agreement with the linear response criter
@4#, the first nonvanishing contribution, proportional to th
friction. It is worth remarking that the correlation function o
Eq. ~11! affords the most convenient way of defining th
microscopic timet mentioned in Sec. I. This is given by

t[E
0

`

Fj~ t !dt. ~13!

We now have recourse to the second approximation
which our crucial theoretical results rests. This assumpt
will be referred to as assumption~ii !, and can be expressed a
follows.
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Assumption (ii). We assume that the functionC(t) has a
finite time scale. This assumption is dictated by the theo
ical and numerical conclusion of the earlier work of Re
@12–15#. This assumption cannot be mislead as a propert
ordinary statistical mechanics. Actually, this assumpt
means a deviation from ordinary statistical mechan
which, as shown in Ref.@4#, would imply

C~ t !5Fj~ t !. ~14!

In the case where the correlation functionFj(t) is not inte-
grable and the correlation time of Eq.~13! diverges, the con-
dition of Eq. ~14! would imply a field of finite intensity to
produce a current of infinite intensity@12#. The numerical
calculations show that this striking physical condition is n
realized@12#, thereby implying a violation of Eq.~14!. This
violation, in turn, is due to the fact that the functionC(t) has
a finite time scale even when the functionFj(t) does not.
Note that under the assumption that the functionC(t) has a
finite time scale, it is possible to define

g[D2^jG1&eqE
0

`

dt8C~ t8!. ~15!

In conclusion, we obtain the following important equ
tion:

]

]t
s~x,t !5^j2&eqE

0

t

dt8Fj~ t2t8!
]2

]x2
s~x,t8!

1g
]

]x
xs~x,t !. ~16!

This result rests on both assumptions~i! and~ii !. However, it
is evident that special attention must be devoted to the
assumption. In a sense the validity of assumption~ii ! has
already been assessed by the theoretical and numerical
of Refs.@12–14#. The validity of assumption~i!, on the con-
trary, requires further discussion. This will be done in Se
III and V.

Before ending this section, we want to remark that in
special case where the condition of Eq.~14! applies, the im-
portant result of Eq.~10! becomes very similar to the
Fokker-Planck-type equation recently found by the auth
of Ref. @16#. These authors pointed out that an equation
this kind shows that anomalous diffusion can be compat
with Boltzmann statistics. We note that this conclusion do
not apply to the case of super-diffusion under study in t
paper, because, as we have seen, Eq.~14! does not apply. In
the subdiffusional case studied in Ref.@16#, however, there
are no compelling reasons leading to the breakdown of
~14!, thereby leaving open the possibility that this conditi
is compatible with Boltzmann statistics.

III. NO INTERFERENCE BETWEEN FREE FLUCTUATION
AND DISSIPATION: TIME EVOLUTION

At first sight, one might be led to think that Eq.~16! is
equivalent to the Langevin-like equation

ẋ~ t !52gx~ t !1j~ t !, ~17!
t-
.
of
n
,

t

st

ork

.

e
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supplemented, of course, by the set of equations necessa
determine the time evolution of the dichotomous varia
j(t). In this section we show that Eq.~16! is not identical to
the equation of motion fors(x,t) generated by Eq.~17!.
This will help us to estimate the error affecting the ma
prediction of this paper about the condition of equilibriu
established by the feedback on the generator of fluctua
without time scale.

A. Second moment time evolution

In Sec. IV we shall point out that Eq.~17! implies that
throughout the system’s time evolution the trajectoryx(t)
departing from the initial conditionx(0)50 never leaves the
interval @2W/g,W/g#. This property means that the secon
moment of the distribution is kept finite at all times and c
never exceed the maximum value (W/g)2. Here we show
that, on the contrary, the second moment of the distribut
driven by Eq.~16! diverges fort→`.

Using Eq.~16!, we obtain

]

]t
^x2~ t !&5gE

2`

`

dxx2
]

]x
@xs~x,t !#

1^j2&E
2`

`

dx x2E
0

t

dt8Fj~ t2t8!
]2

]x2
s~x,t8!.

~18!

Using the method of integration by parts, it is shown that E
~18! yields

]

]t
^x2~ t !&522g^x2~ t !&12^j2&E

0

t

F~ t8!dt8. ~19!

Note that the first term on the right hand side of Eq.~19! can
be derived from the first term on the right hand side of E
~18! via integration by parts, provided that the decay of t
function s(x,t) for uxu→` is faster than 1/uxu3. This means
that the distributions(x,t) cannot be a Le´vy process at any
finite time t.0. We know that, atg50, the diffusing dis-
tribution is in fact a Le´vy process with ballistic peaks signa
ing the presence of a propagation front@10#, thereby ensur-
ing the validity of the method of integration by parts. It
plausible to assume that the action of a dissipation proc
makes the spreading of the distribution still less intense, t
favoring rather than opposing the method of integration
parts.

The solution of Eq.~19! is given by

^x2~ t !&5
^j2&

g E
0

t

Fj~ t2t8!@12exp~22gt8!#dt8. ~20!

For the correlation functionFj(t) let us adopt the choice

Fj~ t !5
~bT!b

~bT1t !b
, ~21!

whereT is the mean waiting time in a state of the velocity.
fact, as a consequence of the one-dimensional assump
we are allowed to use the relation@10#
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c~ t !5T
d2

dt2
Fj~ t !5

~bT!b11~b11!

~bT1t !21b
, ~22!

wherec(t) is the distribution density of sojourn times. Plu
ging the analytical form of Eq.~21! into the right-hand side
of Eq. ~20!, and making a time asymptotic analysis, we o
tain

lim
t→`

^x2~ t !&'t12b, g.0 ~23!

and

lim
g→0

^x2~ t !&'t22b, t@1. ~24!

B. Exact equation of motion for s„x,t…

We note that the use of the same projection method
that applied in Sec. II to the dynamic system described
Eq. ~17! yields

]

]t
s~x,t !5g

]

]x
xs~x,t !1^j2&

]

]xE0

t

dt8

3H Fj~ t2t8!•expFg ]

]x
x~ t2t8!G ]

]x
s~x,t8!J .

~25!

We immediately see that the same approximation as
applied to Eq.~2!, namely, the approximation of neglectin
the influence of the feedback on the memory kernel, ma
Eq. ~25! identical to Eq.~16!. Consequently, the numerica
treatment of Eq.~17! is expected to depart from the predi
tion of Eq.~16!, and the amount of this departure can be us
as a way to establish the error caused by assumption~i! in the
derivation of Eq.~16!, which is the central result of this
paper.

Equation~25! can be used to derive an analytical expre
sion for the second moment time evolution. The Taylor
ries expansion of the exponential operator on the right-h
side of Eq.~25!, and the use of integration by parts, yield

]

]t
^x2~ t !&12g^x2~ t !&52^j2&E

0

t

Fj~ t8!exp~2gt8!dt8,

~26!

which, in turn, yields the following time evolution:

^x2~ t !&52^j2&exp~22gt !E
0

t

exp~2gt8!E
0

t8
Fj~t!

3exp~2gt!dtdt8. ~27!

It is worth remarking that the general expression for
asymptotic value of the second moment is

^x2~`!&5
^j2&

g E
0

`

Fj~ t8!exp~2gt8!dt8. ~28!
-

s
y

at

s

d

-
-
d

e

We see that the asymptotic value for the second mom
is, as it must be, finite, and in the special case of Eq.~21! the
analytical expression for the second moment att5` is

^x2~`!&5^j2&~bT!b exp~gbT!
G~12b,gbT!

g22b
, ~29!

whereG(a,z) is the incompleteg function.
In conclusion, we see that assumption~i! produces the

seemingly unacceptable effect of making the asymptotic s
ond moment diverge, whereas the exact equation of mo
yields a second moment which is always finite, that at eq
librium attains the finite value predicted by Eq.~29!. The
discussion of Secs. IV and V will explain in which sense t
error associated with assumption~i! does not invalidate our
main conclusion that the final equilibrium distribution is
the Lévy kind.

C. Gaussian case

The purpose of this subsection is to study the diffus
process generated by Eq.~17! under the assumption that th
fluctuating variablej(t) is a Gaussian process. In this case
is convenient to proceed as follows. We write the counterp
of Eq. ~1! as

]

]t
rT~x,j,w,t !5@ L̂01L̂1#rT~x,j,w,t !, ~30!

where L̂1 is the interaction term, andL̂0 is the unperturbed
term given by

L̂05L̂A1L̂B . ~31!

In the case under study, the explicit form of the interacti
term is

L̂152j
]

]x
. ~32!

Of course,

L̂A5g
]

]x
x. ~33!

We leave the form of the operatorL̂B unspecified, concern
ing the variablesj andw. We set only the constraint that th
variablej turns out to be Gaussian.

Also in this specific case an exact expression for the
duced distributions(x,t) is found. The procedure is as fo
lows. We write the time evolution ofrT(x,j,w,t) within the
interaction picture; then we trace the total distribution ov
the irrelevant variables, thereby producing

s~x,t !5exp~ L̂At !K expE
0

t

dt8L̂1~ t8!L
B

, ~34!

where ^•••&B denotes the average on the bath of the va
ablesj andw, supposed to be at equilibrium. As shown
Ref. @17#, in the Gaussian case the exponential term can
related to a double time integral over the correlation funct
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^j(t)j(t8)&B , which, due to the assumption of equilibriu
on the bath, turns out to depend only onut2t8u. After
straigthforward calculations, we finally obtain

]

]t
s~x,t !5g

]

]x
xs~x,t !

1
]

]xE0

t

dt8^jj~ t8!&B expFg ]

]x
xt8G ]

]x

3expF2g
]

]x
xt8Gs~x,t !. ~35!

A reader interested in more details on how to derive t
exact result can consult, for instance, Ref.@18#. This author
shows that an earlier general result@19#, of which Eq.~35! is
a special case, is exact in the case of a Gaussian bath.

It is easy shown that this equation, in turn, is equivalen

]

]t
s~x,t !5^j2&eq

]2

]x2
s~x,t !E

0

t

dt8Fj~ t8!e2gt8

1g
]

]x
xs~x,t !. ~36!

Note that one would be tempted to identify

Fj~ t8!exp~2gt8!^j2&eq

with the correlation function^j(0)j(t8)&[^j2&eqFj(t8),
playing the role of memory kernel in Eq.~16!. In this case
one might feel that Eq.~16! becomes equivalent to Eq.~36!.
In other words, one might be tempted to conclude that w
out assumption~i! the equivalence between Eqs.~16! and
~17!, which in the case where the noise is Gaussian is pro
here to be equivalent to Eq.~36!, is insured. This is not so
because Eq.~36! is an equation without a time convolutio
between memory kernel and probability density, whereas
first term on the right-hand side of Eq.~16! has such a time
convolution. This is so because we are now using the
sumption thatj of Eq. ~17! is Gaussian. The Gaussian a
sumption has the effect of producing a reduced equation
motion without the time convolution that, according to t
theoretical analysis of Ref.@20#, is responsible for the emer
gence of Le´vy statistics.

On the other hand, we might have reached the same
clusion without any complex analytical treatment by obse
ing that Eq.~17! is a linear equation, and that the Gauss
statistics ofj(t), if this process is assumed to be Gaussian
transmitted from the microscopic level of the variablej to
the macroscopic equilibrium distribution ofx. This shows
that replacing the dichotomus variablej with a Gaussian
variable would have effects much more devastating than
sumption~i!. Equation~16! yields a Lévy form of equilib-
rium as shown in Sec. IV, and this agrees with the numer
treatment of Eq.~17!, which in fact yields a form of trun-
cated Lévy distribution that become indistinguishable fro
the prediction of Eq.~16! in the limiting case of a very weak
friction.
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IV. EQUILIBRIUM PROPERTIES

The fact that the second moment does not converge
finite value is a consequence of the central approxima
yielding Eq.~16!. This does not conflict with the possibility
that for t→` the distribution asymptotically approaches
time independent shape. Using the recent results of R
@10# and @20#, it is shown that the Fourier transform of Eq
~16! obey the time evolution equation

]

]t
ŝ~k,t !52bukuaŝ~k,t !2gk

]

]k
ŝ~k,t !, ~37!

wherea511b, andb is a positive constant@see Eq.~21! of
Ref. @20##. This equation yields the equilibrium distribution

ŝ~k,`!5expS 2
b

ag
ukuaD , ~38!

which, in turn, according to Ref.@21#, coincides with the
equilibrium distribution corresponding to the equation
motion,

d

dt
x~ t !52gx~ t !1h~ t !, ~39!

whereh(t) is an uncorrelated noise, with probability distr
bution p(h), obeying Lévy statistics, and is thus defined i
Fourier space by

p~k!5E dh exp~2 ikh!p~h!5exp~2bukum!, ~40!

where 0,m,2.
It must be pointed out that Eq.~39! does not coincide with

Eq. ~17!. In the case of very weak friction, they do coincid
in a sense that will be illustrated in Sec. V.

V. NUMERICAL RESULTS

The numerical results of this section are based on a
merical treatment of Eq.~17!, and consequently on a numer
cal implementation of

x~ t !5E
0

t

exp@2g~ t2t8!#j~ t8!dt81x~0!exp~2gt !.

~41!

The fact that the variablej is dichotomous with the correla
tion function of Eq.~21! naturally leads us to adopt the sam
numerical approach as that used in Refs.@10,22#. This means
that two random number generators are used. The first re
in a random number homogeneously distributed in the in
val @0,1#. With a proper nonlinear deformation this is mad
equivalent to a random generation of waiting times with t
distribution of Eq.~22!. This is the way we adopt to build up
the time evolution ofx(t) numerically. We also set an initia
condition fitting the crucial condition of Eq.~5!, and make
the trajectory run for times larger than 20/g. We run 104

trajectories, then we record all of them in a bin. In Fig. 1 w
see a sample of the resulting equilibrium distribution w
b50.6, T550, W51, and g51024, spanning fromx
52W/g to x5W/g. Figure 1 is a crystal clear illustration
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of what we mean by statistics of Le´vy kind. We see that the
equilibrium distribution is truncated, and that at the bord
two sharp peaks emerge. These sharp peaks are a mani
tion at equilibrium of the same dynamic properties resp
sible for the peaks revealed by the numerical treatmen
free diffusion@10,23#. However, the distribution enclosed b
these peaks is shown to fit very well the Le´vy distribution
predicted by the theory of Sec. IV.

Figure 2 is devoted to a comparison between the theo
ical prediction of Eq.~29! and the result of our numerica
treatment. The agreement between theory and numerical
culation is extremely good, not only in the Gaussian regi
b.1, but also in the regimeb,1 up tob.0.5. Significant
discrepancies between theory and numerical results ca
found in the region close tob50, probably as a conse

FIG. 1. Equilibrium distributionP(x)[s(x,`) as a function of
x. The Lévy distribution obtained with the anti-Fourier transform
Eq. ~38! ~dashed line! fits the distribution middle very well. The
system parameters used areg51024, T550, andb50.6. The nu-
merical conditions are as follows: the number of trajectories is 14,
the observation time is 23105, the bin interval is 80, andb
58.43104.

FIG. 2. Comparison between computed and theoretical distr
tion variances. The theoretical prediction used is Eq.~29!. The
crosses indicate the numerical result and the lines the theore
prediction. Each curve has been obtained keepingg constant. From
the bottom to the top curve the values ofg are 1022, 531023,
1024, and 1025.
s
sta-
-

of

t-

al-
e

be

quence of the fact that with a finite number of trajectories
peaks, which are expected to give significant contribution
the second moment, cannot be satisfactorily reproduced

In conclusion, these numerical results prove that we ar
a full control of the error caused by approximation~i!. The
markedly Lévy character of the equilibrium distribution, in
the sense illustrated here with the help of Fig. 1, proves
the main prediction of this paper is correct. We recall th
this prediction can be formulated as follows: The diffusi
feedback on the dynamics of a generator responsible for
perdiffusion results in noncanonical equilibrium, this bei
of the same kind as that found years ago by West and
shadry@21# using only probabilistic and phenomenologic
arguments.

VI. CONCLUDING REMARKS

This section is divided into two parts. The former is d
voted to summarizing the arguments used to derive a L´vy
equilibrium distribution, and to pointing out the main resul
The latter aims at outlining the new perspective on statist
mechanics emerging from these results.

A. Main result

This paper is devoted to extending the program of Re
@3–5# to the case where the bath does not have a finite t
scale. We show that this yields an equilibrium distribution
the Lévy kind rather than the ordinary canonical equilibriu
distribution. This result rests on the assumptions that the
ponential operator appearing on the right-hand side of
~2! depends only on the unperturbed dynamics,@assumption
~i!#, and that the response functionC(t) of Eq. ~12! has a
finite time scale@assumption~ii !#. We take assumption~ii !
for granted on the basis of the results of the research wor
Refs. @12–15#. Ordinary statistical mechanics@12# would
yield Eq. ~14!, and this equation, in turns, would lead to th
generalized Einstein relation~see, for instance, Ref.@15#!.
According to the Einstein relation the first moment of a d
fusion process perturbed by a constant field is proportiona
the unperturbed second moment. In the case of ordinary
tistical mechanics the second moment of an unperturbed
fusion process is linear in time, and so is consequently
time evolution of the first moment of the perturbed diffusio
process. The generalization of the Einstein relation to the
case of anomalous diffusion is possible in the case of s
diffusion @15#. In this case the generalized Einstein relati
produces a current whose intensity tends to vanish witt
→`. The application of Eq.~14!, and consequently of the
Einstein equation, to the case of superdiffusion would lead
a current with an intensity increasing in time with no upp
limit: a physical condition that we judge to be unacceptab
We think that this lends support to the conclusion of t
numerical analysis of Ref.@12#, implying a breakdown of the
Kubo relation and a functionC(t) with a finite time scale, in
the case of superdiffusion.

As far as assumption~i! is concerned, we prove that it i
valid using the following arguments. First of all, we sho
that by means of this assumption as well as of assump
~ii !, we obtain the central result of Eq.~16!; from this, using
the arguments of Sec. IV, the desired Le´vy equilibrium dis-
tribution. Then we focus our attention on Eq.~17! in the case
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when the variablej is dichotomous. This Langevin-like
equation corresponds to the original dynamical model un
the condition that only assumption~ii ! is taken for granted.
Consequently, the comparison between the time evolutio
s(x,t) generated by this equation and that produced by
~16! is expected to be equivalent to assessing the error s
ming from assumption~i!. We prove that Eq.~17! yields,
with no approximation, Eq.~25!. Unfortunately, we do not
have available any general solution of this resulting equat
except for an analytical expression of the second mom
@see Eq.~27!#. For this reason we now rest on the result o
numerical approach. The numerical approach proves tha
expected, the resulting equilibrium distribution~see Fig. 1! is
of Lévy type. The accuracy of the numerical approach
checked, in turn, by comparing the numerical and theoret
second moments~see Fig. 2!. We judge the agreement be
tween theory and numerical treatments to be satisfact
thereby confirming our conviction that the numerical resul
accurate. This numerical approach leads, at the same tim
the results illustrated in Fig. 1, which distinctly shows t
Lévy nature of equilibrium reached by the system of inter
when its bath does not have a finite time scale.

Note that the dichotomous nature of the variablej of Eq.
~17! is essential to establish an agreement with the pre
tions of Eq.~16!, and consequently with the main conclusio
of this paper. In fact, the Gaussian assumption forj seems to
be incompatible with the inverse power nature of its corre
tion function. This is so because the Gaussian assumptio
j would enforce an important property of the ordinary line
response theory, the one expressed by Eq.~14!. At the level
of the response of the bath to a steady external perturba
this would produce the unphysical effect of a divergent c
rent. Furthermore, the Gaussian assumption, due to the li
nature of Eq.~17!, would produce a Gaussian equilibrium,
deep conflict with the prediction of Eq.~16!.

On the basis of these arguments we conclude that assu
tion ~i!, as well as assumption~ii !, is correct, and with it Eq.
~16! is also correct. Thus we prove that a thermal bath w
no time scale yields a Le´vy rather than a canonical equilib
rium.

B. On a new perspective in statistical mechanics

What, then, is the point of our results? We think that th
interest lies in this: They force us to change the conventio
perspective concerning the microscopic foundation of the
nonical statistical behavior. Some years ago, the finding
Zhu and Robinson@24# were criticized by Keirstad and Wil
son @25#, with arguments which are a nice example of t
conventional wisdom. Let us see why. Zhu and Robins
@24# detected significant deviations from the canonical Ma
well velocity distribution, in a physical condition characte
ized by a system of interest that is very fast compared to
thermal bath. This condition seems to be related to that c
sidered in this paper, where the dynamical system play
the role of a bath is in fact so slow as to break the condit
of time scale separation. The reaction of the scientific co
munity, of which the authors of Ref.@25# are a significant
example, has been that the noncanonical behavior dete
numerically by Zhu and Robinson@24# is an artifact of nu-
merical inaccuracy and limited computation time. This pa
er

of
q.
m-

n,
nt

as

s
al

y,
s
, to

t

c-

-
for
r

n,
-
ar

p-

h

r
al
a-
of

n
-

ts
n-
g
n
-

ted

r

shows, on the contrary, that the opposite condition mi
apply, that is, that ordinary rather that anomalous statis
might be the result of numerical inaccuracy. We know th
the roundoff errors are equivalent to the influence of fluct
tions of a given intensitye. The larger the computer accu
racy, the smaller the intensity of the equivalent fluctuatio
On the other hand, we know@26# that the effect of these
fluctuations is that of changing the correlation function
Eq. ~11! into a correlation functionFj* (t) related to the
original by

Fj* ~ t !5Fj~ t !exp~2t/tC!, ~42!

with tC proportional toed, andd a positive coefficient, of the
order of unity, determined by the microscopic dynamics u
der study@26#. It is evident that at timest.tC the Markov
approximation is valid, and as an effect of this the nonsta
ard equation of Eq.~10! becomes identical to a convention
Fokker-Planck equation. The nonconventional equilibrium
Eq. ~25! is a time asymptotic property, and at any given tim
t@1/g we can produce a transition from the regime of no
ordinary statistics to a regime of canonical Gaussian equ
rium by increasing the intensity of the parametere, so as to
realize the condition 1/g.tC .

Finally, we want to stress a problem worthy of futu
investigation. This has to do with the increasing attent
devoted to the nonextensive thermodynamics of Tsallis@27–
29#. Nonextensive thermodynamics means that the devia
from the canonical equilibrium distribution is no longer pe
ceived as a violation of statistical mechanics. This is a v
valuable aspect of this research work@27–29#. In fact, as a
result of the interest that Tsallis’s nonextensive statisti
mechanics has raised, a deviation from the ordinary presc
tion, of the kind earlier mentoned, would be judged the
days as a possible manifestation of nonextensive thermo
namics triggered by long-range correlations of the dynam
system under study, rather than a consequence of nume
inaccuracy.

However, the arguments of this paper show that under
specific form adopted here to establish a fluctuatio
dissipation process in a case of dynamics without time sc
the basin of attraction for equilibrium distribution is given b
Lévy statistics. It is interesting to point out that Le´vy statis-
tics and Tsallis statistics share a power law behavior of
distribution tails. However, the central part of the Le´vy dis-
tribution significantly departs from the generalized canoni
distribution of Tsallis. In an earlier paper@30#, it was shown
that the adoption of Tsallis’ nonextensive thermodynam
naturally leads, via entropy maximization under a prop
constraint, to a transition probability with an inverse pow
law decay at large distances. By repeated application of
kind of transition, as a consequence of the Le´vy-Gnedenko
theorem@31#, the diffusion process is attracted by the bas
of Lévy statistics. In the case of extremely weak frictio
equilibrium is reached as a result of a very large numbe
elementary transitions, and this is probably the main rea
why at the end the resulting statistics is of Le´vy rather than
Tsallis kind.
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